Bruno Contreras-Moreira and Pablo Vinuesa

Published Ahead of Print 4 October 2013.

Updated information and services can be found at:
http://aem.asm.org/content/79/24/7696

SUPPLEMENTAL MATERIAL

Supplemental material

REFERENCES

This article cites 43 articles, 25 of which can be accessed free at:
http://aem.asm.org/content/79/24/7696#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
GET_HOMOLOGUES is an open-source software package that builds on popular orthology-calling approaches making highly customizable and detailed pangenome analyses of microorganisms accessible to nonbioinformaticians. It can cluster homologous gene families using the bidirectional best-hit, COGtriangles, or OrthoMCL clustering algorithms. Clustering stringency can be adjusted by scanning the domain composition of proteins using the HMMER3 package, by imposing desired pairwise alignment coverage cutoffs, or by selecting only syntenic genes. The resulting homologous gene families can be made even more robust by computing consensus clusters from those generated by any combination of the clustering algorithms and filtering criteria. Auxiliary scripts make the construction, interrogation, and graphical display of core genome and pangenome sets easy to perform. Exponential and binomial mixture models can be fitted to the data to estimate theoretical core genome and pangenome sizes, and high-quality graphics can be generated. Furthermore, pangenome trees can be easily computed and basic comparative genomics performed to identify lineage-specific genes or gene family expansions. The software is designed to take advantage of modern multiprocessor personal computers as well as computer clusters to parallelize time-consuming tasks. To demonstrate some of these capabilities, we survey a set of 50 Streptococcus genomes annotated in the Orthologous Matrix (OMA) browser as a benchmark case. The package can be downloaded at http://www.eead.csic.es/compbio/soft/gethoms.php and http://maya.ccg.unam.mx/soft/gethoms.php.

Here we present GET_HOMOLOGUES, an open-source software package released under the GNU General Public License, specifically designed and tested for the pangenomic and comparative-genomic analysis of bacterial strains at different phylogenetic distances on Linux/Mac OS X computer systems. The software is unique in several respects. It implements a fully automatic and highly customizable analysis pipeline, including genome data download, extraction of user-selected sequence features, running of BLAST and HMMER jobs, and indexing, clustering, and parsing of results. It can take advantage of modern multiprocessor architectures, as well as computer clusters, to parallelize time-consuming BLAST and HMMER jobs. It can handle large data sets (for instance, we have analyzed 101 Escherichia coli genomes) on reasonably modest machines (<8 GB RAM) by using Berkeley DB to write temporary data to a disk and/or by calling a heuristic version of our bidirectional best-hit (BDBH) algorithm. Auxiliary scripts are integrated to facilitate the parsing and generation of gene families, including the computation of consensus clusters recovered by combinations of the sequence-clustering algorithms supported. Other scripts are provided for the statistical analysis and graphical display of results, including core and pangenome plots, by calling R functions. Diverse comparative-genomics analyses can be also performed. Finally, an installation script is provided to simplify the installation process, and a very detailed manual with hands-on tutorials is also provided to make this software package reasonably user-friendly.

Here we show some of these capabilities by analyzing a set of 50 Streptococcus genomes downloaded from the most recent version of OMA (Orthologous Matrix), a database that identifies orthologous among publicly available, complete genomes. We chose this genus for several reasons. It exhibits very high levels of genome plasticity. The first pangenomic analyses were conducted on Streptococcus agalactiae in the pioneering work of Tettelin and colleagues, and very detailed comparative-genomics studies have followed for diverse species in the genus, including the major human pathogens S. pyogenes and S. pneumoniae.
FIG 1 GET_HOMOLOGUES flow chart and its outcomes. BLAST and optional Pfam searches are optimized for local (multicore) and cluster computer environments. While the BDBH algorithm uses one sequence from the reference genome to grow clusters, the COG algorithm requires a triangle of reciprocal hits. Instead, the OMCL algorithm groups nodes in a BLAST graph to build clusters. Note that these clustering algorithms can be fine-tuned by customizing parameters such as -C (minimum percentage of coverage in pairwise BLAST alignments), -E (maximum E value for a hit to be considered), -D (require equal Pfam domain composition when defining similarity-based orthology composition), -S (minimum percentage of sequence identity in BLAST query/subject pairs [BDBH/OMCL]) and -N (minimum BLAST neighborhood correlation [BDBH/OMCL]). In addition, the user can choose which genome should be used as the reference using option -r.

(MATERIALS AND METHODS)

Input data and output formats. GET_HOMOLOGUES takes GenBank or FASTA input files and can produce different outputs, as summarized in Fig. 1, including orthologous gene families in FASTA and OrthoXML formats (15), at both the DNA and amino acid levels.

Third-party software dependencies, data processing, and sequence clustering. The software is built on top of BLAST+ (16) and the code base of OrthoMCL, version 1.4 (17), and supports three popular sequence-clustering algorithms: OrthoMCL (OMCL), COGtriangles (18), and our own implementation of the bidirectional best hit (BDBH) algorithm (see Fig. S1 in the supplemental material). Despite their distinct strategies, these approaches call orthologous sequences using BLAST reciprocal best hits as evidence (19), and distinguish inparalogues (20) as genes with best hits in the same genome, i.e., recent paralogues. Moreover, HMMER (http://hmmer.org) is integrated to facilitate Pfam annotation of protein domains (21), so that clusters containing sequences with different domain architectures, which can confound orthology assignment, can be filtered out. If input files are in GenBank format, both nucleotide and amino acid sequence clusters are produced, and orthologous intergenic regions, flanked by orthologous genes, can also be extracted if required. In addition, genome coordinates in GenBank files can be used for selecting syntetic clusters, those with at least one conserved neighbor (see Fig. S2 in the supplemental material). Finally, since GenBank files contain a variety of DNA features, the software can also be asked to focus on, for instance, tRNA genes. In this case, BLASTN searches are performed instead of default BLASTP jobs.

Auxiliary scripts for cluster parsing and analysis. In addition to the main Perl script get_homologues.pl, this software bundles a few auxiliary scripts to help with subsequent analyses. For instance, intersection clusters produced by several algorithms (such as COGtriangles and OMCL) can be easily selected with compare_clusters.pl, allowing the user to work only with consensus clusters. In addition, the script plot_pangenome_matrix.pl is provided for plotting pangenomes and core genomes and for fitting the exponential models of Tettelain et al. (9) and Willenbrock et al. (22) to estimate core and pangenome sizes. Pangenomic matrices are conveniently provided in tabular and PHYLIP format for the automatic generation of pangenomic trees under the parsimony criterion, using the PARS program from the PHYLIP package (23), as illustrated here. The parse_pangenome_matrix.pl script is useful for comparative genomics, focusing on the identification of lineage-specific gene families or expansions, as well as for computing and graphing core, cloud, and shell genome compartments (24). GET_HOMOLOGUES defines these compartments empirically, as follows: core, genes contained in all genomes/taxa considered; soft core, genes contained in 95% of the genomes/taxa considered, as in the work of Kaas and collaborators (25); cloud, genes present only in a few genomes/taxa (the cutoff was defined as the most populated noncore cluster class and its immediately neighboring classes); shell, the remaining genes, present in several genomes/taxa. This script will also compute estimates of core and pangenome sizes under the binomial mixture model of Snipen and colleagues (26). If the genomic data are provided in GenBank format, parse_pangenome_matrix.pl can be asked to plot the clade-specific genes on a linearized genetic map of a reference genome selected from that lineage. The pangenomic tree computed by compare_clusters.pl can be useful for selecting the members of the groups to be compared by parse_pangenome_matrix.pl.

Benchmark data sets. In order to test our software pipeline and demonstrate its capabilities, 50 Streptococcus proteomes from 14 species were downloaded in FASTA format from the December 2012 release of the OMA browser (27), together with their orthologous groups (http://omabrowser.org) (see Table ST1 in the supplemental material). We chose OMA for this benchmark because it is a validated and updated repository of orthologous genes across genomes spanning all domains of life (27). OMA is based on an algorithm that compares genes on the basis of pairwise evolutionary distances instead of BLAST-scores, considering distance estimation uncertainty, and accounts for differential gene losses (10, 28). In this work we also reanalyze the 26 Streptococcus genomes analyzed by Lefèbure and Stanhope (11) (see Table ST2 in the supplemental material).

Proteome annotation. It was necessary to annotate the OMA clusters, because their sequence headers contain only OMA identifiers. To do so, we used a modified version of AutoFACT (29), which uses recent, curated, comprehensive sequence databases, such as NCBI’s Conserved Domains Database (30) and Protein Clusters Database (31), in addition to the COG (Clusters of Orthologous Groups) database (32), the Kyoto Encyclopedia of Genes and Genomes (KEGG) PATHWAY Database (33), the Enzyme Nomenclature Database (http://www.expasy.org/enzyme/), and the Pfam (21) and UniRef90 (34) databases.

Supported platforms and availability. This software is written in Perl and R (http://www.R-project.org) and is best run on a multicore Linux/ Mac OS X box or on a Sun Grid Engine (SGE) computer cluster (tested
with Rocks, versions 4.3 and 5.4 [http://www.rocksclusters.org]). The compressed software package is available for 32- and 64-bit processors and includes a user manual with detailed hands-on tutorials, as well as an installation script that checks for optional software dependencies and guides the user on how to proceed to install them. This script also supports downloading and formatting of the current version of Pfam. The package can be downloaded at http://www.eead.csic.es/compbio/soft/gethoms.php and http://maya.ccg.unam.mx/soft/gethoms.php.

RESULTS AND DISCUSSION

Comparison of GET_HOMOLOGUES clusters with those provided by the OMA browser for completely sequenced genomes.

The core genome for the 50 Streptococcus proteomes from 14 species available in the last release of OMA was calculated with all three clustering strategies (BDBH, OMCL, and COG), imposing a minimum pairwise alignment coverage of 75%. Using these parameters, we obtained 487 BDBH, 521 OMCL, and 538 COG clusters; 456 consensus clusters were detected by all three algorithms (Fig. 2A; see also Table ST3 in the supplemental material). The robustness of GET_HOMOLOGUES is demonstrated by the fact that these core sets contain all of the 177 core genes reported by the OMA project of orthologous protein families (OMAc), as well as many more genes, including 391 BDBH, 413 OMCL, and 428 COG clusters with the same Pfam domain architecture (see Table ST4 in the supplemental material). Among these genes are those encoding essential proteins, such as seven 50S and six 30S ribosomal subunit proteins, translation initiation factor IF-2 (InfB), elongation factor G (FusA), a transcription termination factor (NusA), a transcription antitermination protein (NusG), a DNA topoisomerase (TopA), an ATP-dependent zinc metalloprotease (FtsH), and a recombinase (RecA), to mention but a few. These are bona fide core genes, most of them present in the “universal or extended universal” core computed from 12 bacterial and 2 archaeal phyla (35) (see Table ST5 in the supplemental material).

The size of the strict core computed by GET_HOMOLOGUES is actually within the range (446 to 491 genes) of the strict core computed by Charlebois and Doolittle for 23 complete Bacillus/Streptococcus genomes (35), further highlighting the robustness of this calculation. In addition, sampling experiments similar to those carried out by Tettelin et al. (12), in which Streptococcus genomes are randomly added to the pangenome pool in order to track the fractions of unique and common genes contributed, were performed with the BDBH strategy to estimate the theoretical core genome size (Fig. 2B). The fitted functions converged to sizes of 517 and 595 genes when the Willenbrock (22) and Tettelin (12) fits, respectively, were used, clearly much larger than the core genome reported by OMAc. The pangenome samples (Fig. 2C) seem to converge to linear growth, as already observed by Tettelin for 8 S. agalactiae genomes (12). Note, however, that as expected, the slope of the pangenome curve fitted to the larger and taxonomically more diverse OMA data set (a slope of 60.5) is almost...
twice the slope of 33 reported by Tettelin. The pangenomes obtained by OMCL and COG agree for 5,398 clusters but disagree mainly for clusters of \(\text{H11021} \) genomes, because COGtriangles does not resolve them (Fig. 2D). Figure 2E and F show the partition of OMCL pangenome clusters. Note that for 50 \textit{Streptococcus} strains, the soft-core compartment includes sequences found in at least 47 genomes.

Computing soft-core genomes with GET_HOMOLOGUES on data sets containing draft genomes. The performance of GET_HOMOLOGUES for core genomes was further validated with 26 genomes, from 6 \textit{Streptococcus} species, previously analyzed by Lefebure and Stanhope (11), a data set that (currently) contains 6 draft genomes. Of the 611 core genes reported by these authors, the consensus (OMCL and COGtriangles) soft-core genome recovered 529, as illustrated in Fig. S3 in the supplemental material. Soft-core genes are by definition required to be present in at least 95% of the input genomes, allowing for missing or fragmented genes, which are expected when one is comparing data sets that include draft genomes (25). A strict core genome for this data set, based on the consensus between the BDBH, COG, and OMCL algorithms and on default 75% pairwise alignment coverage, contains only 412 gene families. This figure is clearly an underestimation of the core genome size, as judged from the estimates obtained with 50 proteomes from fully sequenced genomes presented in Fig. 2B and Table ST4 in the supplemental material. This misleading result is caused by missing or incomplete genes in the 6 draft genomes included in the data set, demonstrating the value of defining a “soft” core genome (25) and the flexibility of the GET_HOMOLOGUES package in adapting to different types of data sets and analysis requirements.

Use of pangenome trees to aid in group selection for comparative genomics. The auxiliary script compare_clusters.pl can be asked to generate a pangenomic matrix of the presence or absence of genes, which is inferred from the clusters generated by the main script get_homologues.pl when run with the option -t 0 (which retrieves clusters of all sizes, as opposed to default core clusters). Such a matrix was calculated for the 50 \textit{Streptococcus} proteomes extracted from OMA and was then used to calculate the parsimony pangenomic tree shown in Fig. 3. This kind of tree shows the phylogenetic relationship of proteomes based on their gene family contents. Such phylogenies arguably reflect better the genetic affinities of the proteomes based on their composition (presence or absence of homologous genes), and therefore their phenotypic potential, than conventional species phylogenies estimated from concatenated alignments of core genome genes or gene products (36). For comparison purposes, we also computed a maximum likelihood tree from 364 concatenated alignments of the corresponding “strict” single-copy consensus core genes (see Fig. S4 in the supplemental material), reported by all BDBH, COGtriangles, and OMCL algorithms with the Pfam domain-scanning option enabled (-D) (the corresponding core genome estimates are shown in Table ST4 in the supplemental material). In both phylogenies, the species appear as monophyletic entities. However, comparison of the relationships between species in the two phylogenies reveals some differences. For example, in the pangenome tree, \textit{S. equi} strains appear as the sister group to \textit{S. pyogenes}, while...
on the core genome phylogenetic hypothesis, *S. dysgalactiae* would be the closest relative to *S. pyogenes*, as was found by Lefebure et al. (13) in a similar analysis. Yet in another study (37), the *S. dysgalactiae* strains analyzed grouped as the sister clade of *S. pyogenes* by use of hierarchical clustering (unweighted-pair group method using average linkages [UPGMA]) based on dissimilarities in gene content. GET_HOMOLOGUES uses the parsimony optimality criterion to compute pangenomic trees because the accuracy of the UPGMA clustering algorithm is well known to degrade with increasing deviation of the underlying distance data from ultrametricity (38). Given the important differences in the rates of gene gain or loss frequently observed between closely related bacterial lineages (13), deviations from ultrametricity should be observed frequently in pangenomic matrices. However, the tab-delimited pangenome matrix can be used to compute distance matrices in R or other packages. The differences between the groupings revealed by the two types of core and pangenome trees can be exploited as alternative evolutionary hypotheses to guide the selection of species or proteome groups for comparative-genomics analysis of clade pairs.

Identifying clade-specific genes and gene family expansions.

The auxiliary script `parse_pangenome_matrix.pl` can be used to report cloud, shell, soft-core, and core clusters (24) and to display them graphically (if R is installed), as shown in Fig. 2E and F, which indicate that the shell genome component is the largest one (3,232 genes present in 4 to 46 strains) for the 50 streptococci analyzed, followed by the cloud genome (2,619 genes present in ≥3 genomes). These data clearly illustrate the complex structure of the *Streptococcus* pangenome. The same script is also useful for performing basic comparative-genomics studies, specifically to identify lineage-specific genes or gene expansions in a target group “A” with regard to a reference group “B.” Option -P can be used to define the percentage of genomes that must comply with the presence or absence of a particular cluster (the default is 100%) in order to define genes specifically found or expanded in the focal lineage “A.” As an example, we performed an analysis to identify such gene families among the 11 *S. pyogenes* proteomes from the OMA data set, using as a close reference group the *S. equi* strains. Group selection was based on the pangenomic tree shown in Fig. 3. The analysis was first performed using the default option -P 100 to identify those gene clusters present or amplified in all 11 *S. pyogenes* strains. We found 42 *S. pyogenes*-specific gene clusters and 3 that were selectively expanded in this lineage in comparison to *S. equi*. Among the first class of genes were those encoding well-established streptococcal virulence factors, such as pyrogenic exotoxins, which are associated with *S. dysgalactiae* and other streptococcal virulence factors, such as pyrogenic exotoxin A. These data clearly illustrate the complex structure of the *Streptococcus* pangenome.

Software design and performance benchmarks.

Unlike similar tools (43–45), which require the user to provide precomputed sequence similarity results, GET_HOMOLOGUES explicitly takes care of BLAST and optional Pfam searches. The software can take advantage of modern multiprocessor architectures to parallelize expensive BLAST + and HMMScan analyses or to submit jobs to a computer cluster (see the manual and Fig. S5 in the supplemental material). For instance, 20 *Escherichia coli* genomes (93,612 genes) can be analyzed in <6 h on a commodity laptop (4 GB RAM, 4 cores). Figure S6 in the supplemental material plots the memory footprint and run time of increasingly larger sequence sets, clearly indicating that the software is more scalable when one is using Berkeley DB, a high-performance embedded database. For instance, 101 *Escherichia coli* genomes can be successfully processed with modest RAM requirements by invoking the -s option in the command line: 880 MB, 932 MB, and 902 MB for BDBH, OMCL, and COGTriangles, respectively. For extremely large data sets, GET_HOMOLOGUES also includes a heuristic option to minimize the number of BLAST searches required for a core genome BDBH job, which grows linearly instead of quadratically (see Fig. S7 and Table ST7 in the supplemental material).

In conclusion, we have shown that GET_HOMOLOGUES is a powerful, highly customizable, and fully automatic analysis pipeline that makes robust and rigorous pangenomic and comparative-genomics analyses much easier to perform for microbiologists without strong bioinformatics skills or dedicated hardware. In addition, GET_HOMOLOGUES is scalable, can deal with dozens of genomes on relatively modest computer systems, and will handle hundreds of genomes on more-powerful servers or computer clusters, making it suitable for large-scale pangenomic and comparative-genomics studies. It is open-source software, freely available for academic use.

ACKNOWLEDGMENTS

We thank Romualdo Zayas and Victor del Moral at CCG-UNAM for technical support. We also thank David M. Kristensen and the development team of OrthoMCL for permission to use their code in our project. Funding for this work was provided by the Fundación ARAID, Consejo Superior de Investigaciones Científicas (grant 200720I038), DGAPA-PAPIIT UNAM-México (grant IN212010), and CONACyT-México (grants P1–60071 and 179133).

REFERENCES

5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W,

