
De manera general, el método de la biogeografía cladística busca estudiar grupos cuya monofilia sea demostrable, de acuerdo con un análisis filogenético previo, a través de un cladograma taxonómico. Es importante mencionar que se deben estudiar varios grupos con diferente vagildad (capacidades de dispersión), pues el análisis de un solo grupo es irrelevante, ya que se busca encontrar congruencia entre patrones diferentes. Después se estudian las áreas geográficas habitadas por los taxones de los grupos bajo estudio; luego se busca la congruencia entre las hipótesis filogenéticas de los grupos y las áreas geográficas que ocupan sus elementos, por medio de un cladograma general de áreas. El objetivo de la biogeografía cladística es encontrar la interrelación entre las áreas de endemismo habitadas por los taxones en estudio.

Métodos en biogeografía cladística

Una de las primeras ideas acerca de la biogeografía cladística fue desarrollada por Platnick y Nelson (1978). Implica encontrar grupos monofiléticos que se distribuyen en por lo menos tres áreas a las cuales sean endémicos. Se producen cladogramas para cada grupo, los nombres de los taxones se remplazan por los de las áreas en que habita cada taxón, y estos cladogramas de áreas se comparan para encontrar un patrón de relaciones congruente.

Los métodos que se han desarrollado han tratado de resolver las incongruencias en los cladogramas de áreas, que se encuentran al comparar las áreas de distribución de diferentes organismos, tales como áreas faltantes, taxones ampliamente distribuidos y distribuciones redundantes.

El procedimiento (Humphries, 1992; Espinosa y Llorente, 1993) es el siguiente:
1. Buscar las posibles áreas de endemismo.
2. Efectuar análisis filogenéticos de los grupos que tengan representantes en las áreas estudianas.
3. Sustituir el nombre del taxón para cada grupo por el nombre o código del área que habita, para producir un cladograma de áreas.
4. Comparar los cladogramas de áreas de los taxones analizados.
5. Eliminar la información incongruente contenida en los cladogramas, para obtener una imagen mínima de los patrones de vicaría común compartidos por todos los grupos analizados.
6. Producir un cladograma reducido de áreas común para los grupos.
7. Generar una hipótesis biogeográfica para los grupos.

En la figura 1 se presentan los pasos del método.

Este método efectivamente puede encontrar un cladograma de áreas resultante, aun cuando se tengan problemas de dispersión o extinción. Sin embargo, el método fue criticado debido a que en lugar de resolver de algún modo las incongruencias, simplemente las elimina. Rosen (1978) argumentó que su método permitía encontrar patrones absolutamente congruentes, y destacó que el método era incompleto, ya que no proporcionaba una explicación para las inconsistencias. A partir de este método se han implementado nuevas metodologías para subsanar los problemas debidos a las distribuciones redundantes, extinción, etc.

Biogeografía filogenética cuantitativa o análisis de series de transformación. Fue propuesto por Mickevich (1981), como una alternativa al método de Rosen. Con este método se obtienen mapas biogeográficos como una forma de contrastar hipótesis biogeográficas. Un mapa biogeográfico describe la asociación entre las interrelaciones de un grupo de taxones y de las localidades en las que dichos taxones habitan. Estos mapas biogeográficos pueden considerarse series de transformación de áreas de distribución de taxones (localidades de recolección) en un cladograma. Un estado de área equivale a un estado de carácter y se define como un conjunto de localidades de distribución de un taxón disyunto de otros estados de área. Si cada taxón terminal tiene un área de distribución geográficamente disyunta de to-
...cos los otros taxones bajo estudio, los estados de área corresponderán a las áreas de distribución real de los taxones. Si existen áreas que se solapan, los estados de área se obtendrán nombrando estados separados de cada uno de los conjuntos de las distribuciones que se solapan (Fig. 2). En el ejemplo de la figura 2, un taxón se distribuye en las áreas 1, 2, 3, 4, 5, y el otro en las áreas 4, 5, 6, 7, 8. Las áreas 4 y 5 se solapan, por lo que al nombrarse los estados de área, se nombra un estado A que corresponde a 1, 2, 3; un estado C que corresponde a 6, 7, 8; y un estado B que corresponde a la intersección de 4 y 5.

No siempre es conveniente ignorar las áreas de solapamiento, ya que bajo un análisis más profundo se puede obtener como resultado que los taxones que se solapan son plesiomórficos o convergentes, lo cual puede alterar la interpretación de los resultados, especialmente, cuando el número de taxones con áreas que se solapan es grande.

El procedimiento que se sigue para obtener las series de transformación de los estados de área es el que sigue:

1. Sustituir el estado de área de cada taxón terminal en el cladograma.
2. Hacer todas las posibles optimizaciones de Farris.
3. Especificar todas las relaciones de vecino más cercano para los diferentes estados de área.
4. Contar el número de vecinos más cercanos para los diferentes estados.
5. Producir una matriz de conectividad. Definir las series de transformación conectando los estados de área que son más comúnmente vecinos más cercanos.

En este método se resumen datos biogeográficos para un conjunto de taxones en la forma de un mapa biogeográfico. Estos mapas proporcionan una forma de separar aspectos generales de datos de distribución de los particulares como una forma de probar teorías biogeográficas alternativas.

Este método solamente fue seguido por Liebherr (1988).

Mapas de especies ancestrales. Este método fue propuesto por Wiley (1980, 1981) como un refinamiento al método de Rosen, para examinar si los elementos inconsistentes se debían a diferentes causas o modos de especiación, tales como dispersión, partición de grandes áreas o aislamiento periférico.

![Fig. 2. Método del análisis de series de transformación. a. Áreas de distribución de dos taxones: uno se distribuye en las áreas 1 a 5, el otro en las áreas 4 a 8; se obtienen tres estados de área: el A que corresponde a la distribución de 1, 2, 3; el B que corresponde a 4 y 5; y el C que corresponde a 6 a 8. Nótese que B se forma con las áreas que se sobrepasan; b. Cladograma obtenido tomando a B como el área ancestral; c. Cladograma obtenido si B es el área más apomórfica.](image)

![Fig. 3. Método de mapas ancestrales. Usando como base el ejemplo de la figura 1, se postulan dos rutas posibles para explicar la distribución del taxón A en las áreas 1 y 2 (amplia distribución). La ruta a-b-d-e-f implica que el taxón A se encuentra en el área 2 por aislamiento (vilananza), mientras que la ruta a-c-d-e-f implica que se debe a dispersión hacia el área 2. En la primera ruta las áreas 1 y 2 están unidas y A se encuentra distribuida a lo largo del área, al fragmentarse el área en 1 y 2, A queda distribuido en ambas islas. En la segunda, las áreas 1 y 2 están separadas; A se distribuye en el área 1 y por dispersión llega al área 2.)
decir las áreas conflictivas se resuelven como si fueran grupos hermanos o
cladogramas. En el ejemplo, al resolverse la relación entre 1 y 2 (que es
conflicta en el cladograma), bajo esta suposición, quedan como áreas
hermanas.

De acuerdo con la suposición 1 (Fig. 4), las relaciones de áreas conflictivas se resuelven como grupos monofiléticos o parafiléticos. Supone que lo que es verdadero para una parte del cladograma, es verdadero para la otra parte de él. En el ejemplo, la relación de 3 y 4 (que está
resuelta) es la parte verdadera del cladograma, y por lo tanto ésta no
deba modificarse. La relación de 1 y 2 puede ser resuelta colocando a
ambas áreas alternativamente como grupos hermanos del cladó que
forma 3 y 4 (grupos parafiléticos) o como grupos hermanos (grupos
monofiléticos, equivalente a la suposición 0).

De acuerdo con la suposición 2 (Fig. 4), las relaciones de áreas conflictivas se resuelven como grupos monofiléticos, parafiléticos o
políflicos, por lo tanto es la suposición más inclusiva. Supone que lo
que es verdadero para una parte del cladograma no necesariamente es
verdadero en la otra parte de éste. En el ejemplo, si 3 y 4 están más
cercanamente relacionadas entre sí, esta relación no es necesariamente
cierta, por lo que al resolverse la relación de las áreas conflictivas, cada
una de éstas puede colocarse como grupo hermano del cladó (grupos
parafiléticos; suposición 1), como grupos hermanos entre sí (grupos
monofiléticos; suposición 0) o formar el grupo hermano de cualquiera
de las áreas 3 y 4 (grupos políflicos), con lo que se incrementa grande
mente el número de lugares en el cladograma en el que se pueden
 colocar dichas áreas conflictivas.

En este método, un componente equivale a cada internodo de cada
uno de los cladogramas y se denota con un número (o cualquier otro
código). Su ubicación representa una hipótesis de relación válida para
todas las áreas por arriba de cada internodo.

En general, el análisis de componentes (Nelson y Platnick, 1981;
Nelson, 1984; Page, 1990) deriva conjuntos de cladogramas de áreas
resueltos a partir de cladogramas taxonómicos de áreas bajo análisis,
aplicando las suposiciones 0, 1 y 2 y después toma la intersección de

Fig. 4. Suposiciones metodológicas en el análisis de componentes. Cladograma con un taxón ampliamente distribuido y la manera de aplicar las suposiciones 0, 1 y 2. La suposición 0 sólo permite que las áreas en conflicto se resuelvan como áreas hermanas entre sí. La suposición 1 permite que las áreas conflictivas se resuelvan como áreas hermanas entre sí o como el grupo hermano de las áreas resueltas. La suposición 2 permite flotar a las áreas conflictivas, esto es, pueden resolverse como áreas hermanas entre sí o formar el grupo hermano de las áreas resueltas o también pueden intercalarse para ser el grupo hermano de una de las áreas resueltas. (Modificado de Morrone y Crisci, 1995).

Para ilustrar el método se da el ejemplo de la figura 5, donde se observa que, a partir de la intersección de los cladogramas resultados de áreas correspondientes para los taxones analizados, se determina que el cladograma (A, B, C, D, E) es el cladograma general de áreas. Si no es posible hallar un único cladograma común a todos los conjuntos, es posible encontrar uno compartido por al menos algunos de los mismos o construir un cladograma de consenso (Crisci et al., 1991; Morrone y Carpenter, 1994). Otros autores, entre los que se destacan Zande e Roos (1987), han criticado el uso de técnicas de consenso para obtener un cladograma general de áreas, pero Page (1990) ha aclarado que las mismas no son la única forma para obtener un cladograma general de áreas.

Para aplicar la técnica del análisis de los componentes existe el programa Component 1.5 (Page, 1989a) que construye conjuntos de cladogramas resultados de áreas a partir de los cladogramas taxonómicos de áreas bajo los supuestos 0, 1 y 2 (opción BUILD) y luego determina su intersección (opción SHARED TREES).

Compatibilidad de componentes. Este método, propuesto por Zande e Roos (1987), es explicable de manera sencilla por Humphries et al. (1988). Tiene la ventaja de que las distribuciones amplias dentro de los cladogramas se pueden codificar en la matriz de datos. Zande e Roos (1987) consideraron que la topología del cladograma original puede considerarse como la mejor 'estimación' de la topología del cladograma general de áreas, lo cual es equivalente a la suposición 0.

Como en otros métodos, los taxones terminales se sustituyen por las áreas en las que habitan; a cada clado se le asigna un carácter (o componente). Estos componentes se transcriben en matrices de datos y los caracteres se codifican de manera binaria. Las matrices se analizan de manera separada para obtener cladogramas de áreas individuales. Dentro de la matriz de datos se observan conjuntos monotonéticos (distribuciones únicas de clados sobre áreas) que pueden formar diferentes cladogramas. Subsecuentemente, todos los caracteres se agregan al cladograma y los que 'concuerdan' con el cladograma general de áreas.
son considerados como caracteres de apoyo o soporte, mientras que los caracteres homoplásticos se consideran contradictorios. Para conocer el cladograma de áreas más parsimonioso se utiliza el resultado de la siguiente operación aritmética: número de caracteres contradictorios menos número de caracteres de apoyo.

Es importante notar que la parsimonia en este contexto indica el menor número total de pasos, mientras que Zandee y Roos (1987) consideran la contradicción menos el soporte para obtener una medida de parsimonia.

Para aplicar BPA, se construye una matriz de datos basada en los cladogramas taxonómicos de áreas, basándose en el supuesto 0 (por ejemplo, usando COMPONENT I.5, Page, 1989a), la cual luego es analizada con un algoritmo de parsimonia, mediante un programa apropiado (por ejemplo Hennig86 o PAUP). Para el ejemplo analizado en la figura 6, el análisis de la matriz obtenida a partir de la información contenida en los cuatro cladogramas taxonómicos de áreas conduce al cladograma general de áreas (A, B, C, D).

Fig. 6. Método de análisis de parsimonia de Brooks. a, Cladograma de áreas sin datos conflictivos y matriz ausencia presencia de áreas por componentes; b, cladograma de áreas con un área faltante y matriz ausencia presencia de áreas por componentes; c, cladograma de áreas con un taxón ampliamente distribuido y matriz ausencia presencia de áreas por componentes; d, cladograma de áreas con distribución redundante y matriz ausencia presencia de áreas por componentes; e, matriz de datos resultado de unir todas las matrices anteriores y el cladograma general de áreas obtenido usando la parsimonia de Wagner. (Tomado de Morrone y Crisci, 1995).
'Three Area Statements' o Enunciados de Tres Áreas (TAS). Fue propuesto por Nelson y Ladiges (1991 a,b) y codifica datos distribucionales para cladogramas taxonómicos de áreas de forma de 'enunciados de tres áreas' (Nelson y Ladiges, 1993; Nelson y Platnick, 1991) y el resultado es una matriz para realizar un análisis de parsimonia.

El método consiste en conocer cuántas hipótesis de tres áreas se obtienen de cladogramas con información conflictiva si se mantienen las topologías moviendo las áreas conflictivas bajo las suposiciones 0 y 1, simplemente quitando un área cada vez. Al agregar los taxones faltantes a los enunciados de dos áreas se obtienen todas las posibles soluciones. El siguiente paso consiste en agregar el área faltante al cladograma informativo, lo que presenta diferentes alternativas en la posición de éste, que formará un nuevo componente, lo cual hace que haya diferentes cladogramas informativos. Cuando se han agregado todas las áreas y se conocen cuántos cladogramas son informativos se puede obtener el peso de los componentes, que no es más que la frecuencia de aparición del componente en los distintos cladogramas. La matriz de datos se analiza con Hennig86 o PAUP y se pueden aplicar pesos diferenciales a las columnas.

Este método se ha aplicado en diversos trabajos como Ladiges et al. (1992), Morrone (1993) y Morrone et al. (1994, 1997). Kluge (1993) ha criticado el enfoque de los enunciados de tres taxones, principalmente por sus aplicaciones taxonómicas; algunas de las cuales se podrían hacer extensivas a la biogeografía (Morrone y Crisci, 1995).

Árboles reconciliados. El concepto de árboles reconciliados se desarrolló independientemente en sistemática molecular, parastología y biogeografía, como una forma de describir asociaciones históricas entre genes y organismos (Goodman et al., 1979), parásitos y huéspedes (Mitter y Brooks, 1983) y organismos y áreas (Page, 1990, 1993b; Page y Charleston, 1998). Fue propuesto por Page (1994) como un método que maximiza la cantidad de co-diversificación de historia compartida entre diferentes cladogramas de áreas, al minimizar pérdidas (debidas a extinción a un taxón no recolectado) y duplicaciones (eventos independientes de la vicariante de las áreas) cuando se combinan diferentes cladogramas de áreas para obtener un solo cladograma general de áreas. Cuando hay correspondencia entre el cladograma de áreas y el de los organismos que las habitan, ambos cladogramas pueden reconciliarse sin problema (Fig. 7). En otras palabras, hay una perfecta correspondencia entre las ramas terminales y los nodos internos de ambos. Sin embargo, en la mayoría de los casos, no existe una correspondencia entre las topologías de dos árboles que se desea reconciliar. El método general se ilustra en la Figura 8. En estos casos, la forma de reconciliar dos árboles es duplicando nodos internos. En el ejemplo, se duplicó el nodo "6" dando lugar a un nodo idéntico "6'" que contiene los taxones terminales "4', 12, y 13".

En el caso de la biogeografía, la codivergencia entre áreas y organismos equivale a vicariante, las duplicaciones equivalen a especie de los organismos independientemente de los eventos de vicariante; la transferencia horizontal equivale a dispersión; y las pérdidas equivalen a extinción del taxón. Las medidas de congruencia entre dos árboles son las siguientes: las duplicaciones que representan las divergencias independientes entre el huésped y el asociado; a más duplicaciones menos co-diversificación. Ramas que se agregan; número de nodos que se agregan (ítems de error, no significado biológico directo). El número mínimo de pérdidas puede significar extinciones.

Este tipo de métodos de análisis de asociaciones históricas se siguen refinando y se espera que en el futuro se desarrollen aún más (Page y Charleston, 1998).

Análisis de subárboles (TASS), Nelson y Ladiges (1996) presentaron un algoritmo que construye subárboles, iniciando del nodo terminal hacia la punta del cladograma, implementado en su programa TASS. Este análisis de subárboles es un método de valor potencial para la biogeografía cladística. El procedimiento que se sigue es el de reducir uno o más cladogramas complejos en más de un subárbol libre de

Fig. 7. Ejemplo de correspondencia total entre el cladograma de áreas y el de los organismos que las habitan (modificado de Page, 1994).

Fig. 8. Método de árboles reconciliados (tomado de Page, 1994).

a, Árboles de áreas y organismos que no se corresponden uno a uno; b, árbol reconciliado que se obtiene duplicando el nodo 6.
paralógeno en el sentido geográfico. Los datos geográficos se asocian con los nodos informativos de cada subárbol. Estos datos asociados son los únicos datos realmente relevantes para la biogeografía cladista.

 Una aplicación de esta técnica es la de Morrone y Urrutxury (1997).

Análisis de dispersión-vicarianza (DIVA). Propuesto por Ronquist (1997) como un método biogeográfico que reconstruye distribuciones ancestrales de una filogenia dada, sin asumir ningún tipo de relación en cuanto a la forma de las relaciones de área. Trata a la dispersión y a la extinción especialmente. Es un método que reconstruye la biogeografía histórica de grupos individuales. Sin embargo, puede usarse también para encontrar las relaciones generales de un área, sobre todo cuando dichas relaciones no se conforman con un patrón jerárquico.

Controversia entre panbiogeógrafos y biogeógrafos cladistas

Para los biogeógrafos cladistas es indispensable que los taxones analizados sean monofiléticos. El método de la biogeografía cladista consiste en la sustitución de los taxones (comúnmente especies) en un cladograma por las áreas que estos ocupan, por ello, es necesaria la mayor resolución posible de las relaciones filogenéticas para inferir las relaciones de las áreas. En otras palabras, la sistemática puede ser un recurso para inferir homología evolutiva en el espacio; pero no al revés; la distribución geográfica no es un recurso necesario y suficiente para inferir homología evolutiva en la forma. El gran problema de la biogeografía cladista es la disponibilidad de suficientes grupos, cuyas filogenias se consideran satisfactoriamente resueltas.

Para la panbiogeografía, un grupo no puede calificarse de monofilético si no muestra congruencia tanto en espacio como en forma (Craw, 1988). La inferencia de origen común debe probarse simultáneamente en biogeografía y sistemática, por lo que no es necesario partir del supuesto de que los grupos en los que se basa el análisis biogeográfico sean monofiléticos. En todo caso, la posibilidad de monofilia de los grupos es otra hipótesis a comprobar o refutar, mediante el análisis de su distribución geográfica en conjunto con otros grupos que se distribuyen en las mismas áreas o localidades. En resumen, tanto la sistemática puede ser una fuente de evidencia para la biogeografía, como la biogeografía puede de arrojar luz sobre el análisis sistemático. Esta diferencia, que parece solo de método, se fundamenta en una concepción más dura de la panbiogeografía, en cuanto a la correspondencia entre las historias de la biota y la Tierra. En los últimos años, sin embargo, algunos autores como Craw (1989), admiten la posibilidad de usar la información filogenética para orientar los trazos individuales o estándar (generalizados), pero insiste en la idea de que éste es sólo un recurso y no un árbitro que decida el rumbo del análisis.

De cualquier forma, a pesar de estos puntos de conflicto, parece asomarse la posibilidad de una síntesis metodológica en la biogeografía histórica. Muchos métodos se habrán de compartir en la medida que se resuelven más hipótesis filogenéticas y se conozcan mejor sus distribuciones.

Referencias

